Hysteretic Behavior of Prestressed Concrete Bridge Pier with Fiber Model

نویسندگان

  • Wang Hui-li
  • Feng Guang-qi
  • Qin Si-feng
چکیده

The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Carbon Fiber Sheet Retrofitted Rc Bridge Columns

Experimental studies were conducted by some researchers to investigate the cyclic performance of CFSretrofitted columns; however there is a need to develop analytical methods which can simulate its hysteretic response. This study presents an analysis of the hysteretic behavior of CFS-retrofitted reinforced concrete circular columns. Fiber element analysis was conducted based on cyclic constitut...

متن کامل

Extended Kalman Filter for Identification of Nonlinear Earthquake Responses of Bridges

Identification of the nonlinear hysteretic behavior of a reinforced concrete (RC) bridge pier subjected to earthquake loads is carried out based on acceleration measurements of the earthquake motion and bridge responses. The modified Takeda model is employed to represent the hysteretic behavior of the RC pier with a small number of parameters, in which the nonlinear behavior is described by var...

متن کامل

Development and Practical Application of a Lifetime Management System for Prestressed Concrete Bridges

A practical Bridge Management System has been developed by the author, which is referred to as the Japanese Bridge Management System (J-BMS) for existing concrete bridges. This paper introduces a newly developed bridge management system for the prestressed concrete (PC) bridges (J-BMS PC version) which is integrated with the PC bridge rating expert system (PC-BREX). The proposed system is able ...

متن کامل

Railway Continuous Prestressed Concrete Bridge Design in Ballastless Track Turnout Zones

Laying ballastless track on railway bridges has the advantages of reducing the train noise problem, improving passenger comfort, and reducing track maintenance costs. Therefore, railway bridges with ballastless track have gradually turned into a major trend in railway systems all over the world. In Taiwan, railway bridges with ballastless track have been in use for many years, with ballastless ...

متن کامل

Seismic Retrofitting RC Structures with Precast Prestressed Concrete Braces- ABAQUS FEA Modeling

Precast prestreesed concrete braces are a new method for seismic strength of Concrete Structures which has the following benefits: a) no wet concrete work in construction site b) No bolt or anchorage to the existing frame c) easy to apply d) short construction period e) low construction cost, to evaluate seismic performance of strengthened structure a model consist of existing frame and concret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014